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Although partition functions of finite-size systems are always analytic, and hence have no poles, they can be
expressed in many cases as series containing terms with poles. Here we show that such poles can be related to
linear branches of the entropy, expressed in the thermodynamic limit as a function of the energy per particle.
We also show that these poles can be used to determine whether the entropy is nonconcave or has linear parts,
which is something that cannot be done with the sole knowledge of the thermodynamic free energy derived
from the partition function. We discuss applications for equilibrium systems having first-order phase
transitions.
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It is known from the seminal work of Lee and Yang �1�
that the zeros of partition functions, seen as functions of a
complex variable, provide useful information about the ana-
lyticity properties of the free energy in the thermodynamic
limit, and thus about the appearance of phase transitions in
that limit. Their main results, extended by Fisher �2� to the
canonical partition function,

Z��� = �
microstates �

e−�H���, �1�

of an N-particle system with Hamiltonian H, show that the
complex zeros of Z��� lie away from the real axis for all
N��, and that, in the presence of a phase transition, the
zeros of Z��� get infinitesimally close to the real axis in the
limit N→�. The real value �c at which the zeros “pinch” the
real axis in this limit corresponds to the critical inverse tem-
perature at which the thermodynamic free-energy function,
defined as

���� = lim
N→�

−
1

N
ln Z��� , �2�

is nonanalytic �3�. Moreover, the angle at which the locus of
zeros crosses the real axis determines the order of the phase
transition corresponding to �c �4�. These properties of the
zeros of Z��� have been widely used for studying phase tran-
sitions in equilibrium systems �see �5��, as well as, more
recently, nonequilibrium systems in steady states �6�.

We study in this Rapid Communication another com-
ponent of Z���, which we refer to as the set of “poles” of
Z���, and relate it to the thermodynamic properties of the
system represented by H. We use the term “pole” with quotes
because Z��� has of course no singular points, since it is an
analytic function of � for N finite. The poles that we have in
mind actually appear in the terms of a special asymptotic
expansion of Z��� to be defined below. The main result that
we prove here is that these poles are related to linear
branches of the microcanonical entropy of the system repre-
sented by H, and can therefore be used to study two physical

phenomena associated with these branches, namely, first-
order phase transitions and phase separation in the canonical
ensemble �7�.

The knowledge of these poles also solves an outstanding
problem in the field of long-range interacting systems �7�,
which is to determine whether a system undergoing a first-
order phase transition in the canonical ensemble has an en-
tropy in the microcanonical ensemble which is nonconcave
or is concave but has a linear branch. These two types of
entropy are known to lead to the same nondifferentiable free-
energy function ���� �7�, so they cannot be distinguished
from the point of view of this function alone. Our results
show, however, that they can be distinguished using informa-
tion about the “poles” of Z���. As an illustration of these
results, we compute the linear entropy of a simple model of
DNA denaturation from its partition function. At the end, we
also comment on the applicability of our results for calculat-
ing large deviation functions characterizing the fluctuations
of nonequilibrium systems.

The problem that we are concerned with is to calculate the
microcanonical entropy function

s�u� = lim
N→�

1

N
ln ��u� �3�

from the density of states ��u�, which is obtained from Z���
via the inverse Laplace transform formula

��u� =
1

2�i
�

r−i�

r+i�

Z���e�Nud� , �4�

where r is an arbitrary real number located inside the region
of convergence of Z��� �9�. Given that s�u� is a
thermodynamic-limit quantity, it is often assumed that its
calculation via Eq. �4� requires not the exact knowledge of
Z��� but only of the asymptotic behavior of Z��� as N→�,
expressed, according to Eq. �2�, as Z����e−N���� with sub-
exponential corrections in N. By substituting this asymptotic
result in the inverse Laplace transform, and by performing a
saddle-point approximation of the complex integral, one in-
deed finds

s�u� = inf
�

��u − ����	 . �5�
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The problem with this result, which is nothing but a Leg-
endre transform written in a technical form, is that it does not
always hold �7�. To see why, consider the following two
“mock” partition functions:

Z1��� = eN� + e−N�, Z2��� =
eN� − e−N�

�
. �6�

It is easily verified that each of these partition functions is
analytic, despite the appearance of the 1 /� term in the sec-
ond, and that both partition functions lead to the same free-
energy function ����=−
�
. However, the densities of states
obtained from Z1��� and Z2��� and their corresponding en-
tropies must be different, since the partition functions are
themselves different. A simple calculation of the inverse
Laplace transform shows that this is the case. The density of
states obtained from Z1��� is �1�u�=	�u+1�+	�u−1�,
whereas the density of states obtained from Z2��� is such that
�2�u�=1 for u� �−1,1� and is 0 otherwise. As a result, the
entropy s1�u� obtained from �1�u� is finite and zero only for
u= 
1, whereas the entropy s2�u� associated with �2�u� is
finite and zero for all u� �−1,1�. Hence the entropies calcu-
lated from Z1��� and Z2��� are different, but both partition
functions lead to the same free energy ����.

The problem illustrated by this example is well docu-
mented in large deviation theory �7� and has been discussed
recently in the context of long-range interaction systems,
such as self-gravitating particles and unscreened plasmas, as
these often have nonconcave entropies �8�. The problem is
that entropy functions that have the same concave envelope,
as in the example above, have the same free energy ����,
and cannot, as mentioned before, be distinguished from the
point of view of ���� alone. This means concretely that the
knowledge of the asymptotic behavior Z����e−N���� is not
sufficient in general to compute s�u�; extra information is
required to faithfully obtain s�u�, especially if one suspects
that s�u� is nonconcave or has a linear branch.

The two partition functions shown in Eq. �6� give a hint as
to what kind of extra information is required. By recasting
each of these partition functions in the form

Z��� = a���eN� + b���e−N�, �7�

we see that what distinguishes Z1��� from Z2��� is the pres-
ence of poles in the coefficients a��� and b��� of Z2���. As
we show next, it is the presence of these poles in the series
representation of Z2��� that is responsible for the linear be-
havior of s2�u� seen for u� �−1,1�. This applies to any par-
tition function in the sense that poles in asymptotic expan-
sions of Z��� are generally associated with linear branches of
s�u�.

To demonstrate this claim, we go back to the formula of
the inverse Laplace transform shown in Eq. �4�, and assume,
as an extension of Eq. �7�, that Z��� admits an asymptotic
expansion of the form

Z��� = �
j

cj���e−N�j���. �8�

This expansion can always be obtained for one-dimensional
systems by expanding Z���, for example, in the eigenbasis of

the transfer matrix associated with H �10�. For systems of
higher dimensions, there is not necessarily a transfer matrix
to work with, and for these, Eq. �8� should presently be con-
sidered as an ansatz rather than a derived result. This point
will be discussed in more detail in a subsequent paper �11�.

Here we shall work on the assumption that Eq. �8� is
given, and that the functions � j��� obtained are concave and
smooth functions of � that do not depend on N. Moreover,
we shall assume that the coefficients cj��� are subexponen-
tial in N, and may have poles in the complex �-plane �12�.
These assumptions are verified for some models of interest
�10�, including the one studied at the end of this Rapid Com-
munication.

It should be mentioned that expansions similar to Eq. �8�
have been considered before in studies of Yang-Lee zeros,
first-order phase transitions, and metastability �see, e.g.,
�13��. However, to our knowledge, none have considered the
possibility that the coefficients cj��� may have poles in �. To
see how these poles relate to the properties of ��u� and in
turn s�u�, we insert expansion �8� in the formula of the in-
verse Laplace equation, and proceed to evaluate the complex
integral by going through the following steps:

�1� Distribute the integral of the inverse Laplace trans-
form inside the sum of the partition function to obtain

��u� = �
j

1

2�i
�

r−i�

r+i�

cj���eN��u−�j����d� . �9�

This is permitted provided that all the integrals inside the
sum converge. With this in mind, we should choose r in such
a way that each integral in Eq. �9� is convergent. In particu-
lar, we cannot put r on any poles of cj���.

�2� Approximate each of the integrals labeled by j in Eq.
�9� to exponential order in N using the saddle-point or
steepest-descent approximation �14�. This requires that we
deform the vertical integration contour sitting at r, which is
often called the Bromwich contour, to another equivalent
steepest-descent contour that passes through the saddle point
of the exponent

� j��,u� = �u − � j��� , �10�

in such a way that Im � j�� ,u� is constant. Assuming that
� j��� is differentiable and concave, the saddle point is given
by the unique solution of � j����=u. Henceforth, we denote
this saddle point by � j

�, and the steepest-descent contour
passing through this point by Dj.

�3� Two situations will arise from the previous step, de-
pending on whether or not the deformation of the Bromwich
contour to the steepest-descent contour necessitates that we
cross poles of cj���. On the one hand, if no such poles need
to be crossed, then the integral on the Bromwich contour is
equivalent to the integral evaluated on Dj. On the other hand,
if the deformation requires that we cross any poles of cj���,
then
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1

2�i
�

B

cj���eN�j��,u�d� =
1

2�i
�

Dj

cj���eN�j��,u�d�

+ � Res, �11�

where �Res is the sum of the residues of the poles that were
crossed when transforming the Bromwich contour B into the
steepest-descent contour Dj �see Fig. 1�.

�4� Insert the result obtained in Eq. �11� into the sum of
Eq. �9�, and cancel any terms that have the same magnitude
but opposite sign. At this point, we expect many residue
terms to cancel. What remains can be put in the form

��u� = �
j
� 1

2�i
�

Dj

cj���eN�j��,u�d� + �
�

Res�� j�
��� ,

�12�

where Res�� j�
�� denotes the residue of cj���eN�j��,u� for the

pole � j�
�.

�5� Approximate the integrals on the steepest-descent con-
tours Dj by their saddle points, i.e.,

1

2�i
�

Dj

cj���eN�j��,u�d� � eN�j��j
�,u� �13�

with subexponential corrections in N �14�. The term cj���
does not contribute to the approximation because it is as-
sumed to be subexponential with N.

�6� Evaluate the residue terms. If we assume, for simplic-
ity, that the cj���’s have only simple poles, then the residues
are approximately given by

Res�� j�
�� �  j�eN�j��j�

�,u�, �14�

with subexponential corrections in N, where  j�= 
1. Note
that this approximation must be performed only for those
poles � j�

� that were crossed in step 3 and do not get cancelled
in step 4 above. The remarkable feature of these poles is that
they give rise to terms that are exponential in N similar to the
saddle points.

�7� The result of steps 5 and 6 is the following approxi-
mation for the density of states:

��u� � �
j
�eN�j��j

�,u� + �
�

 j�eN�j��j�
�,u�� . �15�

As a last step, we further approximate this expression by
taking the largest exponential term �Laplace approximation�.
In order to express this final step in a convenient form, let us
define B j to be the set containing the saddle point � j

� and the

poles � j�
� that remain after step 4. Then, by taking the largest

term in that expression, we obtain

s�u� = sup
j

sup
��Bj

��u − � j���	 . �16�

Note that the sign variable  j� does not appear in the above
result because the dominant term of ��u� is necessarily posi-
tive. Moreover, the saddle point or pole selected from the
maximization over B j is necessarily real, otherwise s�u�
would not be a real function.

The representation of the entropy s�u� shown in Eq. �16�
is the main result of this Rapid Communication. The concav-
ity properties of s�u� are deduced from this equation by ana-
lyzing the maximization over the set B j. Three cases must be
distinguished:

Case 1: If, for an interval U of values for u, the maximi-
zation over B j picks up a pole, then s�u� will be proportional
to u over U, since poles of cj��� do not depend on u. In this
case, s�u� will thus have a linear branch.

Case 2: If, for u�U, the maximization over B j does not
pick up a pole, but picks up instead a saddle point � j

� which
is constant as a function of u, then s�u� will also have a linear
branch over U.

Case 3: If, for u�U, the maximization over B j picks up
neither a pole �case 1� nor a saddle point � j

� which is con-
stant in u �case 2�, then s�u� will vary in a nonlinear way
with u. In this case, s�u� may be concave or nonconcave, but
has no linear branch over U.

It can be checked that the linear entropy s2�u� mentioned
earlier arises from case 1 above. The pole in the correspond-
ing partition function Z2��� is at �=0 and gives rise to the
flat part of s�u� with slope 0. Case 3 applies, on the other
hand, to Z1���, as the latter has no pole in its series repre-
sentation. For examples of entropy calculations involving
constant saddle points, see �15,16�.

To provide an explicit illustration of Case 1 involving
poles, we now calculate the entropy of a simple model of
DNA denaturation due to Kittel �17�. The partition function
of this model can be written in the thermodynamic limit as

Z��� =
1

� − �c
−

e−N���−ln G�

� − �c
, �17�

where � is the energy associated with one bond of a DNA
chain consisting of N bonds, G is a degeneracy factor asso-
ciated with this energy, and �c=�−1 ln G is the critical in-
verse temperature at which the thermodynamic free energy
����, derived from Eq. �2�, is nondifferentiable �18�. From
the Yang-Lee theory point of view, �c is also the accumula-
tion point of the zeros of Z���.

To obtain s�u� for this model, we first note that Z��� in
Eq. �17� has the form of Eq. �8� with �1���=0 and
�2���=��−ln G and that each of the two terms composing
Z��� has a pole at �c. Next we choose r��c, and follow the
calculation steps described above. For u� �0,��, we find that
the Bromwich integral involving the first term of Z��� gives
rise to a residue proportional to eN�cu because of the pole at
�c, whereas the Bromwich integral of the second term van-
ishes �19�. Therefore, s�u�=�cu for u� �0,��. For all other

ˇ� r�̌� Reˇ

Imˇ

B

� �

D

FIG. 1. Deformation of the Bromwich contour B sitting at r to a
steepest-descent contour D crossing the saddle point ��. A residue
arises if the deformation crosses a pole ��.
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values of u, the Bromwich integrals either cancel one another
or vanish, and so we find s�u�=−� outside �0,��. This agrees
with the entropy that one would obtain by combinatorial
means. Moreover, the fact that the finite part of s�u� is linear
with slope �c confirms the fact that ���� is nondifferentiable
at �c �7�.

This calculation of s�u�, although simple, provides an il-
lustration of what should be observed in more realistic equi-
librium systems with first-order transitions, especially sys-
tems involving short-range interactions, such as nearest-
neighbor spin systems or screened Coulomb systems �8�. For
these, it is known that s�u� is in general a concave function in
the thermodynamic limit �20�. This implies that, if ���� is
nondifferentiable, then s�u� will have in general one or more
linear branches �7�, which are likely to be associated, accord-
ing to our results, with poles in some expansion of Z���.

It should be obvious, to conclude, that our results can be
applied to partition functions other than the canonical one to
calculate the entropy as a function of macrostates other than

the energy per particle �e.g., magnetization or particle den-
sity�. Our results can also be generalized, following the
theory of large deviations �7�, to calculate entropy functions
describing the fluctuations of observables of nonequilibrium
systems in driven steady states. In this context, one must
replace Z��� by the generating function of the observable
considered. Poles in series representations of generating
functions have been considered in the context of nonequilib-
rium systems �see, e.g., �15,21�� and are known to be asso-
ciated with extensions of the Gallavotti-Cohen symmetry of
nonequilibrium fluctuations �22�. We expect such poles to
also play a role in nonequilibrium first-order phase transi-
tions, as these are generally characterized by nonequilibrium
entropy functions �viz., rate functions� having linear or non-
convex branches.
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